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ABSTRACT: Conventionally, z-direction modulation of two-dimensional covalent organic frameworks (2D-COFs) is difficult to
achieve because they rely on spontaneous π−π interactions to form 3D architectures. Herein, we report a facile construction of a
novel intercalated covalent organic framework (Intercalated-COF) by synchronizing operations of supramolecular donor−acceptor
(D−A) interactions (A unit: 2,5,8,11-tetra(p-formylphenyl)-perylene diimide (PDI) 1; D unit: perylene 3, as intercalator) in the
vertical directions, with polymerizations (by only reacting 1 with p-phenylenediamine 2) in the lateral directions. In this Intercalated-
COF, the PDI-based covalent 2D layers are uniformly separated by perylene guest layers. This supramolecular strategy opens the
possibility for z-direction modulation of 2D-COFs through “intercalating” various guest molecules and thus may contribute to the
exploration of advanced applications of these porous and crystalline frameworks.

Exploring advanced applications of new materials relies on
exquisite utilization of their structure uniqueness and

facile manipulations of the architectures. In recent years, two-
dimensional covalent organic frameworks (2D-COFs)1 have
attracted considerable scientific interest for their potential
applications in catalysis,2 gas storage/separation,3 solid state
batteries,4 sensing,5 and optoelectronics, as well as photo-
voltaics.6 In general, 2D-COF synthesis is dominated by both
lateral growth of covalent-bonded single-layers and vertical
extension of the frameworks through less controllable π-
stacking of the 2D-layers.7 Until now, the exploration of 2D-
COFs predominantly relied on the modulation of size,
symmetry, and linkage of building blocks, which can precisely
define the topology, composition, and ordering in the covalent
2D layers. In contrast, despite the significance of π-stacking in
the formation, stability, and property-modulation of 2D
COFs,8 only a few principles have been proposed to improve
or alter the vertical stacking behaviors of the repeated 2D
layers.9 In this context, with proper supramolecular assembly
systems, specific guest molecules could be “intercalated”
between the covalent layers of normal COF structures through
a bottom-up approach, leading to novel intercalated COFs
(Intercalated-COFs) with z-direction controllable layered
heterostructures (Scheme 1). This approach is inspired by
the structural regulation mode of graphite to graphite
intercalation compounds (GICs) and could in turn be
developed into a brand-new field of research.10 More
importantly, distinct to GICs, Intercalated-COFs provide a
unique opportunity to be constructed with diversified building
blocks.
As one special case of π-stacking, columnar alternating

aromatic donor−acceptor (D−A) stacking has been success-
fully used in the construction of a wide variety of supra-
molecular 1D architectures.11 We speculated that one type of
novel D−A Intercalated-COFs could be built by the lateral

growth of covalent layers via condensations of the D or A unit
with suitable linkers and an synchronous vertical extension of
the frameworks via supramolecular D−A interactions between
the A or D unit and the covalent layer (Scheme 2). Notably, a
few COFs involving D−A interactions have been reported
albeit all with segregated D−A alignments because the
electrostatic attractions for most D−A pairs are not strong
enough to overcome the dispersion interactions between
identical and large π-surfaces.12 Therefore, stable alternating
D−A stacking arrangements are an essential prerequisite for
successful construction of a D−A Intercalated-COF. Herein,
we employed electron-deficient and bulky 2,5,8,11-tetra(p-
formylphenyl)-perylene diimide (PDI) 1 as an A unit, electron-
rich perylene 3 with similar geometry as a D unit and also a
guest, and p-phenylenediamine 2 as a linker. For 1 and 3,
strong homomeric interactions between identical π-surfaces
that often lead to segregated D−A alignments are reduced due
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Scheme 1. Schematic Illustration of Supramolecular
Multicomponent 1D Stacks toward Intercalated-COF
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to the steric and electrostatic repulsions.13 Instead, the stability
of the alternating 1−3 stacks is significantly increased as the
electrostatic attractions owing to large overlap of the π-surfaces
and less pronounced steric crowding due to the buffering with
planar molecule 3.14 Thus, 1 could polymerize with 2 in lateral
directions and assemble with 3 into alternating D−A stacks
along vertical directions to achieve the first Intercalated-COF,
with alternating crystalline 2D ((1−22)n: polymer having a 1:2
molar ratio of 1 to 2) layers and intercalated guest (3) layers
(Scheme 2b).
Based on our recent work,15 N,N-bis(hexylheptyl)-2,5,8,11-

tetra(p-formylphenyl)-PDI 1 with a flat perylene π-scaffold was
synthesized readily (Scheme S1). The self-assembly behaviors
of 1 in dimethylacetamide (DMAc) were thus investigated.
The high value (1.5) of the A0−0/A0−1 ratio of 1 in the UV/vis
absorption spectra indicated that the stacking between the
identical PDI rings is negligible in DMAc (Figure S1).16 The
solvothermal reactions of 1 with linker 2 were performed
under vacuum at 120 °C in commonly used solvents such as
DMAc, n-BuOH, dioxane/ortho-dichlorobenzene (o-DCB),
DMAc/o-DCB, and n-BuOH/o-DCB. Due to the importance
of π−π stacking interactions for COF growth along vertical
directions, these reactions only produce amorphous porous
organic polymers (POP 4) with no positive powder X-ray
diffraction (PXRD) signals at small angles (Scheme 2a).
The D−A interactions between 1 and 3 were investigated by

both 1H NMR and UV−vis absorption spectroscopy. Upon
mixing equimolar of 1 and 3 in the DMF-d7/DMAc solution,17

the aromatic protons of the perylene cores of both 1 and 3
shifted upfield with line broadening (Figure 1), indicating the
formation of a strongly associating D−A complex and a fast
equilibrium between the D−A complex and the individual
components in solution.18 In addition, the D−A interactions
are clearly visible to the naked eye as upon mixing the DMAc
solutions of 1 (red) and 3 (bright yellow) together, the color
promptly changes to dark brown (Figure 1). At 20 °C, the 1:1
mixture of 1 and 3 in DMAc showed a broad absorption band
centered at 680 nm, corresponding to the charge-transfer (CT)
interactions between the D−A pair. Increasing the temperature
up to 35 °C resulted in a progressive decrease of the CT band
but with no peak shift, suggesting the disassembly of the CT
complex (Figure S2).
Encouraged by these results, 1, 3, and 2 were employed to

construct the first Intercalated-COF. To accelerate the imine
formation between 1 and 2 while also maintaining the strong
D−A interactions (<35 °C) between 1 and 3, Sc(OTf)3 was
employed as the reaction catalyst.19 After extensive optimiza-
tions, DMAc was found to be the optimal solvent. In a typical

protocol, a 1:2:1 mixture of 1, 2, and 3 and 1 mL of DMAc in a
10 mL Pyrex tube was sonicated for 5 min at room
temperature. To the stock solutions different amounts of
Sc(OTf)3 in DMAc were added. The combined solution was
sonicated at room temperature for another 5 min and then
kept at 30 °C for 3 days, after which the precipitate was
collected by centrifugation, rinsed with solvents, and dried
under vacuum to yield a red powder.20 The PXRD patterns
reveal reflections at 4.32°, 7.56°, and 8.40°, which are
assignable to the (110), (210), and (220) facets of
Intercalated-COF 5, respectively. The presence of broader
peaks corresponding to the (001) plane indicated the decrease
in crystallinity along the c axis that can be attributed to the
involvement of both the long alkyl chains4b and the
intercalated perylene molecules between the COF layers
(Figure 2A). Pawley refinements (dotted green curve)
confirmed our peak assignments as evidenced by their
negligible differences (black curves). The experimental
PXRD patterns were in good agreement with the simulated
patterns in AA-stacking, with perylene 3 as the guest molecule
(orange curve). In stark contrast, the AA-stacking (magenta
curve) and staggered AB-stacking (blue curve) mode of (1−
22)n COF without guest intercalation could not reproduce the
experimental XRD patterns. In particular, the presence of two
peaks in the 2θ range of 4°−5° calculated for the traditional
(1−22)n COF model further confirmed the formation of
Intercalated-COF 5 (Figure 2).21

In the FT-IR spectra (Figure S3), the characteristic band of
imine groups appears at 1620 cm−1 and dramatic attenuations
of −NH2 stretching vibrations and the CO stretching
vibration at 1698 cm−1 of 1 confirmed the successful formation
of imine bonds. In addition, the peaks assigned to C−H out of
plane bending vibrations of aromatic rings at 770 cm−1 in 5 is
similar to that of the 1−3 CT complex, which further supports
the D−A interactions in the 3D network. The CP/MAS 13C
NMR spectrum of 5 revealed the characteristic resonance peak
of imine carbons at 158 ppm (Figure S4), further supporting
the formation of imine bonds. The results of the elemental
analysis of 5 were in good agreement with the expected
chemical formulas (Table S1). Due to the existence of
hydrocarbon 3, Intercalated-COF 5 exhibited higher C and
H content than 4.
Thermogravimetry analysis (TGA) provided additional

evidence (Figure 4a). The perylene molecule in the
Intercalated-COF sample displayed a much higher sublimation

Scheme 2. Schematic Representation of the Synthesis of (a)
POP 4 in the Absence and (b) Intercalated-COF 5 in the
Presence of D−A Interactions

Figure 1. 1H NMR spectra of 1, 1/ 3 (1:1), and 3 in 2:8 (v/v) DMF-
d7/DMAc and the actual color of 1, the mixture, and 3. (The
concentrations of all components were kept at 5 mM.)
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temperature than that of both pure 3 and a 1:1 mixture of 1
and 3, which indicates that the intercalated perylene is more
stable during the test processes.22

Field emission scaning electron microscopy revealed that 5
displayed similar particle shapes with 4 but with a much larger
size (Figure S5). The BET surface areas for 5 and 4 were
determined to be 16 and 9 m2 g−1, respectively (Figure S6).
This result suggests that the inner space of 5 and 4 were fully
occupied by the flexible swallow-tailed alkyl chains of 1.4b

Monitoring the reaction course of 1 and 2 in situ in the
absence or presence of perylene 3 may provide insight into the
Intercalated-COF formation processes (Figure 3).23 Addition
of the catalyst Sc(OTf)3 and 2 equiv of 2 in the solution of 1
immediately yields a precipitate. Besides the precipitation,

NMR spectra of the solution indicated that the reactants 1 and
2 were quickly and completely consumed, leading to an imine
product (1−24) in solution. The precipitate was filtered and
hydrolyzed with hydrochloric acid for NMR analysis (Figure
S7), which suggested the formation of amorphous product (1−
22)n. In the presence of 3 (1 equal), the condensation between
1 and 2 becomes much slower probably because the aldehydes
in the D−A stacks are more sterically hindered and less
electron-deficient than the free ones.24 Over a long period of
time, two alternating D−A stacks 1−3 and (1−24)−3 coexist
in certain amounts in solution, and the ratio of 1 to 3 in these
two stacks maintains at 1:1, indicating the ratio of 1 to 3 is also
1:1 in the crystallized Intercalated-COF.25 As such, the D−A
stacks have more time reorganizing into optimum conforma-

Figure 2. (A) Observed XRD patterns (red) and simulated profiles using the Pawley refinement (dotted green) of Intercalated-COF 5 and their
difference (black), AA-stacking (magenta), AA-stacking with 3 as intercalation (orange), and staggered AB-stacking (blue) modes of the (1−22)n
COF, respectively. (B, C) Unit cell structure of AA-stacking mode. (D, E) Unit cell structure of AA-stacking with 3 intercalation mode. (F, G) Unit
cell structure of staggered AB-stacking mode.

Figure 3. 1H NMR spectra of a mixture of 1 (5 mM), 2 (10 mM), and Sc(OTf)3 (1.6 mM) in the absence and in the presence of 3 (5 mM) in 2:8
(v/v) DMF-d7/DMAc at 30 °C (CH2Br2: 1 mM).
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tions to achieve high crystallinity. More importantly, the
crystalline nature can provide the driving force for more stacks
as growth units attaching to the crystal lattice and thus
promote reactions until completion (Figure 3).
With this unique structure, diffuse reflectance UV−vis

measurements of the solid state of these samples were carried
out to extract reliable optical absorption profiles (Figure 4b).

The A0−0/A0−1 ratios of 1 (1.1) and POP 4 (1.1) suggested
that there is no enhanced stacking between the PDI rings in 4.
On the contrary, for 5, both broader PDI absorption maxima
with a reduced A0−0/A0−1 ratio and a new strong near-infrared-
light absorption were observed (Figure 4b). With the CT band
observed for the Intercalated-COF 5, the fluorescence
corresponding to PDI rings led to charge transfer induced
quenching (Figure S8).26

In conclusion, based on a supramolecular strategy, we
designed and constructed the first D−A type Intercalated-COF
with alternating PDI-based covalent 2D layers and perylene
guest layers. Strong homomeric interactions between identical
π-surfaces that often lead to segregated D−A alignments are
reduced here by employing sterically bulky 2,5,8,11-tetra(p-
formylphenyl)-perylene diimide 1 and electron-rich perylene as
the A and D unit, respectively. In situ monitoring of the
reaction course by NMR indicated that the D−A stack
formation is beneficial for the crystallization of the
Intercalated-COF. Besides the chance for z-direction modu-
lation of normal 2D-COFs, this supramolecular strategy also
provides an atomically precise bottom-up approach toward
well-defined robust heterostructures with diversified building
blocks. We hope the innovative and unique Intercalated-COF
structures could offer new nanotechnological applications, such
as optoelectronic applications and exfoliation toward single
layer COFs.
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